

Research on Energy Efficient Building Quality Assurance, Tools and Professional Training

Financial workshop

Witta Ebel PASSIVE HOUSE INSTITUTE Darmstadt/Germany

Economy of energy efficiency

Frankfurt, 18 March, 2016

www. passivehouse.com

© Passive House Institute

Passive House principles and components – **EuroPHit** 0 **Sustainable Energy Becomes Affordable** Institut Fresh air **Exhaust air** V: ventilation with heat recovery I: Insulation 6000 € 4300 € Filter Extract \mathbf{O} Ð air suppy air **III:** Passive **House windows** G 2500 € IV: airtight Reduce by exhaust vent. II: no thermal construction and heat distribution bridges 0 € 500 € **-3300 € EuroPHit Economy and Financing**

Autor: PHI | WE

Payback vs. Efficiency Life Cycle Costs

Investment cost

yearly savings of energy costs

- Long Life cycle Typical: 30 50 years
 - High quality investment with long life time
 - Dynamical Methods Costs of capital, changing prices
 - Return after end of payback period
 - Sustainable investment?

Consequence \rightarrow Life cycle costs

Costs

- Expenditures are made to create value or benefits (e.g. comfortable houses)
- Follow-up costs for operating: maintenance, energy End of use (?) – not planned, far in the future, costs or earnings?

Life cycle costs

- total costs over life time
- cost arise at different times : cannot be added (\rightarrow dynamical methods)

Investment theory

- The benefits can become tradable commodities, with both a market and a price
- Investments are made to achieve revenues with the comodities sold on the market. The goal of the investor is to generate profits

Economy: Life cycle costs. Present (Cash) value EuroPHit

How to calculate life cycle costs

- Costs of investment
- Costs of maintenance
- Costs of energy

Institut

Cost of capital: interests (p = interest rate)

Principle of compounding: Account now B after n years B*(1+p)ⁿ (final value)

Principle of discounting:

Costs later A after n years

 \rightarrow Cash value C = A/(1+p)ⁿ

(= amount you need now to pay later using credit and interests)

Discount factor: 1/(1+p)ⁿ

yr

EuroPHit

Institut

Economy and Financing

Economy | *Present value*

Principle: Future income / costs are discounted and added

Example: Energy costs E_i in year i, i= 1,...n Present value = $\sum_i^n E_i/(1+p)^i$,

Present value = Sum of discounted revenues

Market capitalisation

Cash value factor

 $B(p,n) = \frac{1 - (1+p)^{-n}}{p}$

Total cost balance

- Net present value (NPV)
- = sum of all discounted incomes and costs
- = profit (as present value)
- NPV ≥ 0: investment is profitable NPV < 0: loss!

Economical assessment: *always in Alternatives*

- An investment should be at least as attractive as its alternatives that are available on the capital market
- Dynamical methods regard price for capital
 - interest on debt
 - or equity (opportunity costs, required rate of return)
- Costs and revenues (payments) become comparable with present values
- Investments are profitable → positive /nonnegative net present value (= profit)
- As long as capital (incl. debt) is available, it is economically rational to make ALL investments up to a net present value = 0

Economical assessment: *always in Alternatives*

Annuity method: annual costs and revenues EuroPHit

Annuity

constant yearly rates of an Investment

or of a present value

Annuity factor is

 $\begin{array}{l} -> 1/n \text{ limit für } p = 0 \\ \text{static approximation} \\ -> p \quad (\text{limit for } n \rightarrow \infty \end{array}$

approximation $\sim 1/n + p/2$ or 1/n + p/2 * (1+np/6)

When you do it, do it right!

Capital costs: additional investment for efficiency

Interest rate

- Investment in efficiency is a risk-free investment
- low "risk adjusted" interest rate
- results in high return of investment
- real interest rate $\mathbf{p}_{real} = (1 + p_{nom}) / (1 + i_{Infl}) 1 \approx \max 2,5 \%$ p.a.

Energy costs: rising; average over calculation period performance standard?

Calculation period n : Life cycle! 40,50 ore more years

- When calculated over a shorter period shorter:

Regard residual values of investment!

Anyhow costs: Insulation of a demo project in Nuremberg

© Burkhard Schulze Darup LILHAN III HAN

Architect/Photo: Burkhard Schulze Darup Owner: WBG Nürnberg. Source: AKKP 24 Measures needed anyhow, regardless of renovation level

- scaffolding
- removal of old plaster
- addition of new plaster
- insulation panels

high quality new plaster saved!

Keep the old plaster Don't "save" money with thin insulation

Take the opportunities for efficiency technology: realise the additional benefits wherever possible.

When you do it, do it right!

EuroPHit

Calculation Period and Residual Values

How long will insulation last? At least 40-50 Years!

But: You do not obtain credits with such a long period. Typical periods: 20 a.

Calculation period **n** and lifecycle **N** can be different Different life cycles for partial investments (components) – STEP by STEP **Residual value** is an "Income" at the end of the calulation period n **Capital cost = depreciation during calcualtion period** = Investment – residual value

Passivhaus

Passivhau Institut

- Required rate of return is B/e
 the discount rate
- Revenues count only with their cash values
- High required rates of return
 - Lead to high capital costs (annuity = amortisation + interest)
 - depreciate revenues
 - makes investment less profitable

Cash value of periodic revenues

2%

0%

4%

6%

Interest (discount) rate

8%

Autor: PHI | WE

10%

Institut

Influence of parameters on economical result (NPV) EuroPHit

Capital Cost: The point in time – and step by step

350

300

250

- At the end of lifetime, energetic measures can easily be linked, which makes the measures economically attractive (principle of coupling): Only additional investment counts.
- When lifecycle is not yet over, the residual values of anyhow costs have to be added to the investment.
- Step by step: renovation according to the lifecycle: No residual values of anyhow costs.
- For each step: "when you do it, do it right" – and plan the next measures.

Capital Cost (€/m²)

The economical effect of bringing forward the renewal of windows (2013) with Passive House windows: Additional capital cost

Institut

20

EuroPHit

Reliable performance: Quality is key

Passive House: Quality for a sustainable economy

Well Defined Standard and Quality Assurance EuroPHit Passivhaus Institut

Quality assurance of design and during construction

Quality assurance for materials and components

- Identification of relevant parameters
- Measurement and calculation procedures
- Documentation and integration in whole building performance calculation
- **Capacity building:**
 - **Training and Certification of**
 - **Designers / Consultants / Craftsmen**

Part 1: General information to the public

Part 2: Information and tools for members

PASSIVE

HOUSE

passipedia

Cost optimal construction | *clickable map*

IN http://www.passipedia.org/passipedia_en/planning/component_guidelines_for_cost-optimal_passive_houses_and_enerphit_retrofits

Predictable Design needs reliable Products EuroPHit

Product Certification

- Values for design
- integrated in PHPP → directly availabe for energy balance worldwide
- + component database

Make it Simple, Efficient, Cost effective

0

Parameter: Influence of starting point

- The existing energetic quality limits the cost saving potential and, therefore, the revenues of the investment
- Medium quality is a barrier to economically attractive investments
- Therefore: sustainable quality instead of substandards

"When you do it, do it right"

Institut

Variant "Medium quality": Next cycle causes higher costs

Institut

Economy of Energy Efficiency: Summary

InstitutCapital Cost

Passivhaus

- Attributed Costs not full costs. Most profitable when anyhow measure is Residual values
- High quality design: Avoid additional costs
- Life cycle
 - Only life cycle costs
 - When calculation period is different, residual values must be regarded
- Discount rate/required rate of return
 - High required rates of return → high capital costs (annuities)
 - \rightarrow depreciate revenues
 - Alternative investments are riskless investments low interest rates on capital market
- Energy costs
 - Energy price uncertain don't calulate with exponentially growing prices
 - Reliable energy performance (→ energy savings)
 - Avoid performance gaps by quality assured design and construction
- Planning for the future
 - Regard long life cycles
 - Sustainable standard ist the goal
 - Avoid "Lost opportunities", suboptimal standards, lock-in effects:
 - When you do it, do it right!

FINANCING and FUNDING

Financing through low-interest loans EuroPHit

Assumptions: subsidies by KfW-loan (50 000 Euro); interest rate (mortgage) 4% p.a. = calculatory interest rate (expected rate of return); interest rates funding bank (analog KfW) (nominal) 2,50% p.a., for 10 years fixed; Fuel price: 8.4 ct/kWh, electricity:25 ct/kWh, rise in energy prices 1% p.a. (real).

Funding energy effciency | Financial effects EuroPHit

Local result of funding EE in buildings

Every Euro of incentive

- generates a total investment of 16 €,
- while the additional investment for additional efficiency is only 2 € (but double the value of the incentive)
- creates added value of 7 €
- generates a local labour equivalent to 3 €.

Institut

Funding energy effciency | Financial effects EuroPHit

Financial aids should focus on:

- improving liquidity and reducing the financial burden. This can be achieved through direct financial support, but also special credit lines with low interest rates (especially in the first years)
- supporting collaterals to facilitate access to attractive bank credits
- binding financial support to quality assured design to realize the expected performance and guarantee damage-free construction and long lifetime measures
- avoiding medium quality that hinders the necessary reduction and causes "lock in" effects. Instead,
- achieving very high energy efficiency and superior quality, because the next renovation will only happen after many years.

Institut