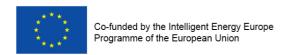


D3.4_PHPP Result Sheets

DRAFT

CS12

Family Home_Ville & Andrea Mäkinen


INTELLIGENT ENERGY – EUROPE II

Energy efficiency and renewable energy in buildings IEE/12/070

EuroPHit

[Improving the energy performance of step-by-step refurbishment and integration of renewable energies]

Contract N°: SI2.645928

Technical References

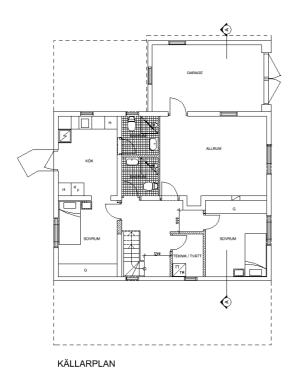
Project Acronym	EuroPHit
Project Title	Improving the energy performance of step-by-step refurbishment and integration of renewable energies
Project Coordinator	Jan Steiger Passive House Institute, Dr. Wolfgang Feist Rheinstrasse 44/46 D 64283 Darmstadt jan.steiger@passiv.de
Project Duration	1 April 2013 – 31 March 2016 (36 Months)

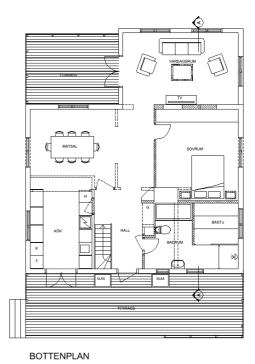
Deliverable No.	D3.4
Dissemination Level	PU
Work Package	WP3_Practical Implementation
Lead beneficiary	04_MosArt
Contributing beneficiary(ies)	06 IGPH
Author(s)	Ingo Theoboldt
Co-author(s)	
Date	30-11-2014
File Name	EuroPHit_D3.4_CS12_20141130_IGPH_Family Home_Ville & Andrea Mäkinen.doc

The sole responsibility for the content of this [webpage, publication etc.] lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Table of Contents

Abstract	4				
1 Existing building: PHPP Result Sheet	5				
1.1 PHPP Result sheet of the existing building					
2 Retrofit steps	6				
2.1 Overall refurbishment Plan	6				
2.1.1 Retrofit steps:	6				
2.1.2 Efficiency Improvements	7				
3 Completion of step-by-step refurbishment to EnerPHit	8				
3.1 PHPP Result Sheet of the completed EnerPHit standard	8				
List of tables and figures					
Figure 1: Specific energy efficiency values of the existing building modelled with PHPP	5				
Figure 2: Overview refurbishment steps	6				
Figure 3: Overview energy efficiency improvement according to the overall refurbishment plan	7				
Figure 4: Specific energy efficiency values of the completed project modelled with PHPP	8				




Abstract

This document provides a short overview of the efficiency improvement of a step-by-step refurbishment to EnerPHit standard to be undertaken for the project 12, Family Home Ville & Andrea Mäkinen in Stockholm, Sweden.

First, the result sheet of the project's current status will present the calculated energy consumption of the existing building.

The PHPP result sheet of the completed EnerPHit retrofit will present the energy demand estimated for the completion of the project according to the overall refurbishment plan

Existing building: PHPP Result Sheet

1.1 PHPP Result sheet of the existing building

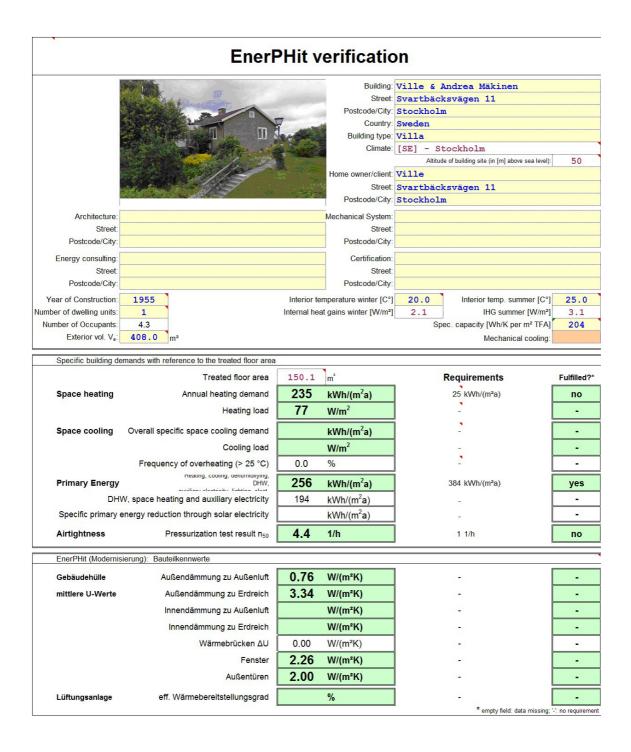
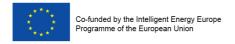



Figure 1: Specific energy efficiency values of the existing building modelled with PHPP

2 Retrofit steps

2.1 Overall refurbishment Plan

2.1.1 Retrofit steps:

Wilmcote house will be enclosed in an insulated self-supporting steel skeleton to improve the thermal performance of the walls, roof, windows and doors. New heat recovery ventilation systems will be provided for each flat. Existing heating systems will be retained for the time being.

Step No.	Year	Measures	Specific Heating demand [kWh/(m²K)]	Specific PE demand [kWh/(m²K)]
0	1954	Existing building	235	256
1	2014-15	Replace lower floor & add roof insulation; insulate lower floor walls	111	153
2	2016 (?)	Windows exchange & MVHR instal.	71	124
3	2020 (?)	Upper floor facade insulation	17*)	85
4	2020 (?)	Possible addition of PV and/or solar thermal system	-	65**)

^{*)} EnerPhit-certification via components not necessary

Figure 2: Overview refurbishment steps

^{**)} Approx. estimate e.g. with a 3.3 kWp PV system

2.1.2 Efficiency Improvements

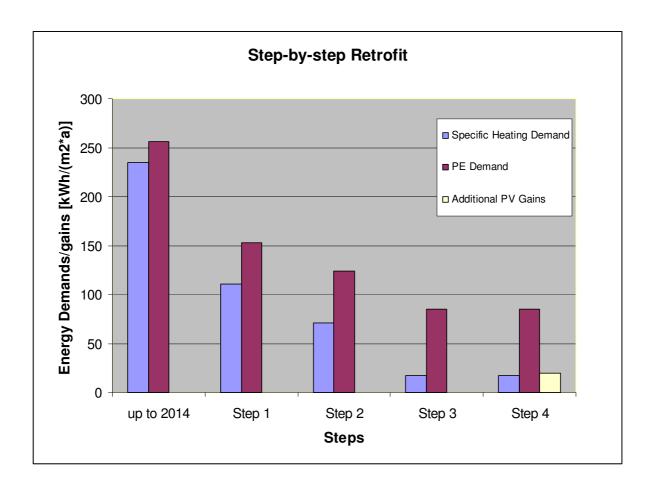


Figure 3: Overview energy efficiency improvement according to the overall refurbishment plan

3 Completion of step-by-step refurbishment to EnerPHit

3.1 PHPP Result Sheet of the completed EnerPHit standard

		-	•		
	Treated floor area	150.1	m'	Requirements	Fulfilled?'
Space heating	Annual heating demand	17	kWh/(m²a)	25 kWh/(m²a)	yes
	Heating load	11	W/m²		-
Space cooling	Overall specific space cooling demand		kWh/(m²a)		(/ -)
	Cooling load		W/m ²		-
	Frequency of overheating (> 25 °C)	8.0	%		-
Primary Energy	DHV,	85	kWh/(m²a)	122 kWh/(m²a)	yes
DHW, space heating and auxiliary electricity		32	kWh/(m ² a)		-
Specific primary	energy reduction through solar electricity		kWh/(m²a)		-
Airtightness Pressurization test result n ₅₀		1.0	1/h	1 14h	yes
EnerPHit (Modernisi	erung): Bauteilkennwerte				
Gebäudehülle	Außendämmung zu Außenluft	0.09	W/(m²K)		-
mittlere U-Werte	Außendämmung zu Erdreich	0.09	W/(m²K)		·
	Innendämmung zu Außenluft		W/(m²K)		:-
	Innendämmung zu Erdreich		W/(m²K)		-
	Wärmebrücken ∆U	0.00	W/(m²K)		-
	Fenster	0.89	W/(m²K)		-
	Außentüren	0.80	W/(m²K)		-
Lüftungsanlage	eff. Wärmebereitstellungsgrad	83	%		_

Figure 4: Specific energy efficiency values of the completed project modelled with PHPP

