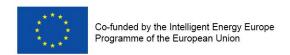


D3.4_PHPP Result Sheets

DRAFT

CS11 Primary school "Tsanko Dustabanov"

Gabrovo


INTELLIGENT ENERGY – EUROPE II

Energy efficiency and renewable energy in buildings IEE/12/070

EuroPHit

[Improving the energy performance of step-by-step refurbishment and integration of renewable energies]

Contract N°: SI2.645928

Technical References

Project Acronym	EuroPHit
Project Title	Improving the energy performance of step-by-step refurbishment and integration of renewable energies
Project Coordinator	Jan Steiger Passive House Institute, Dr. Wolfgang Feist Rheinstrasse 44/46 D 64283 Darmstadt jan.steiger@passiv.de
Project Duration	1 April 2013 – 31 March 2016 (36 Months)

Deliverable No.	D3.4
Dissemination Level	PU
Work Package	WP3_Practical Implementation
Lead beneficiary	09_EnEffect Group
Contributing beneficiary(ies)	09_EnEffect Group
Author(s)	Iglika Lutzkanova
Co-author(s)	
Date	25 10 2014
File Name	EuroPHit_D3.4_20141025_EnEffect_CS11_PHPP_ResultSheet.doc

The sole responsibility for the content of this [webpage, publication etc.] lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Table of Contents

Α	bstrac	et	4
1	Exi	isting building: PHPP Result Sheet	5
	1.1	PHPP Result sheet of the existing building, Block A	5
	1.2	PHPP Result sheet of the existing building, Block B	6
	1.3	PHPP Result sheet of the existing building, Block C	7
2	. Retr	ofit steps	8
	2.1 O	overall refurbishment Plan	8
	2.1	.1 Retrofit steps:	8
3	. Com	pletion of step-by-step refurbishment to EnerPHit	10
	3.1 F	PHPP Result Sheet of the completed EnerPHit standard, Block A	10
	3.2 F	PHPP Result Sheet of the completed EnerPHit standard, Block B	11
	3.3 F	PHPP Result Sheet of the completed EnerPHit standard, Block C	12

List of tables and figures

Figure 1: Ground floor plan, not to scale	4
Figure 2: Elevation, not to scale	2
Figure 3: Specific energy efficiency values of the existing building modelled with PHPP 9 A	Beta, Block
Figure 4: Specific energy efficiency values of the existing building modelled with PHPP 9 B	Beta, Block
Figure 5: Specific energy efficiency values of the existing building modelled with PHPP 9 C	Beta, Block 7
Figure 6: Overview refurbishment steps, Block A and A1(connection)	8
Figure 7: Overview refurbishment steps, Block B	g
Figure 8: Overview refurbishment steps, Block C	g
Figure 9: Specific energy efficiency values of the completed project modelled with PHPP 9 A	Beta, Block
Figure 10: Specific energy efficiency values of the completed project modelled with PH Block ${\sf B}$	PP 9 Beta 11
Figure 11: Specific energy efficiency values of the completed project modelled with PH Block C	PP 9 Beta 12

Abstract

This document provides a short overview of the efficiency improvement of a step-by-step refurbishment to EnerPHit standard to be undertaken for the project CS11.

First, the result sheet of the project's current status will present the calculated energy consumption of the existing building.

The PHPP result sheet of the completed EnerPHit retrofit will present the energy demand estimated for the completion of the project according to the overall refurbishment plan

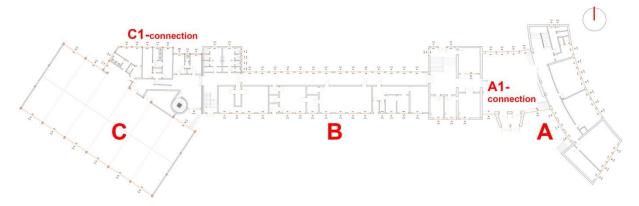


Figure 1: Ground floor plan, not to scale

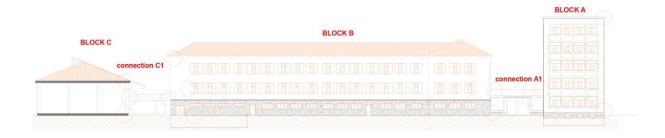
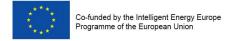



Figure 2: Elevation, not to scale

1 Existing building: PHPP Result Sheet

1.1 PHPP Result sheet of the existing building, Block A

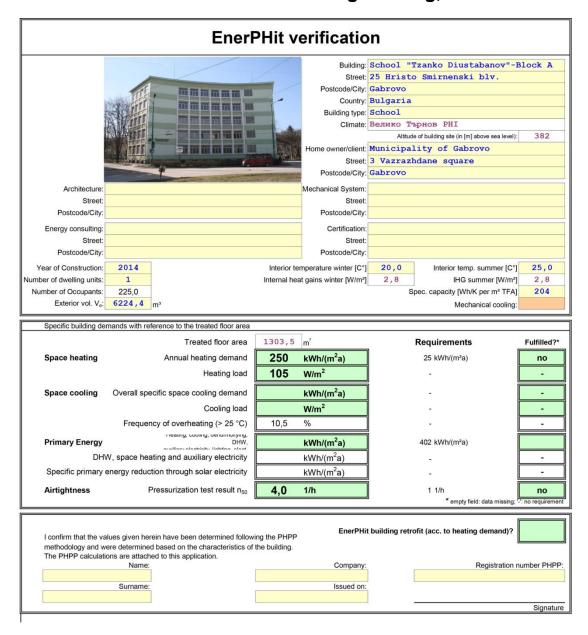
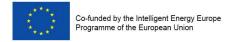



Figure 3: Specific energy efficiency values of the existing building modelled with PHPP 9 Beta, Block A

1.2 PHPP Result sheet of the existing building, Block B

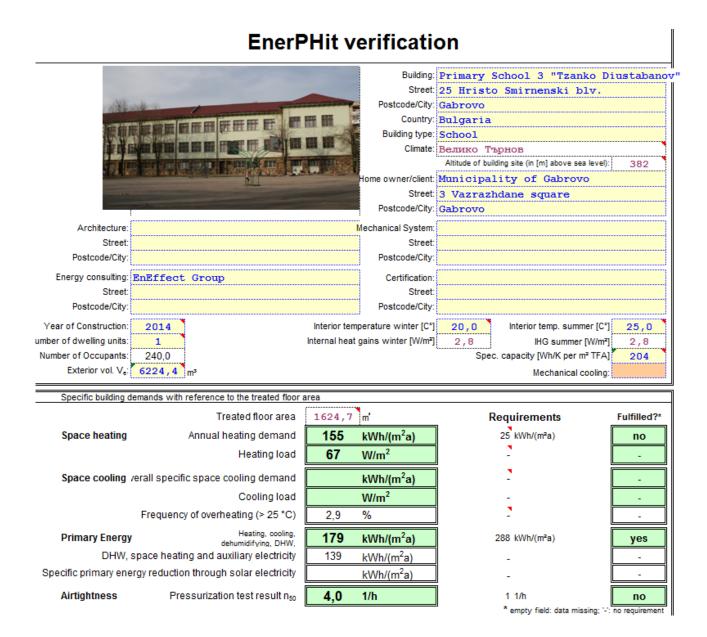
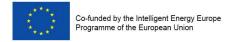



Figure 4: Specific energy efficiency values of the existing building modelled with PHPP 9 Beta, Block B

1.3 PHPP Result sheet of the existing building, Block C

Figure 5: Specific energy efficiency values of the existing building modelled with PHPP 9 Beta, Block C

2. Retrofit steps

2.1 Overall refurbishment Plan

2.1.1 Retrofit steps:

Table 1: Step-by-step approach by blocks:

The Project will propose refurbishment in the following steps:

Step 1 and Step 2: Thermal insulation of the roof and walls, replacement of windows, ventilation with heat recovery (depending on the condition of the roof insulation it could be done in the second step).

Step 3: RES implementation, new solar panels on the roof of the Gym. New heat sources.

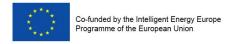
Step 4: Insulation of ground floor or the walls in the basement (different solutions in each block) Replacement of the aluminium windows in the Gym.

The following tables shows the separation of the works in different blocks:

Step	Year	BLOCK A	Specific Heating Demand	Specific Primary Energy Demand
existing situation		constructed 1962, roof needs refurbishment , no insulation, old wooden windows in poor condition, heating system in poor conditions	250,1	
STEP 1	2015	Roof insulation block A, wall insulation block A1	188,6	257,8
STEP 2	2015	external wall insulation 25 cm. EPS – F, new windows, shading, airtightness, ventilation, reducing thermal bridges	24,2	128,8
STEP 3	2015	New District heating substation (the one from Gym could be used)	24,2	124,0
STEP 4	2020	Insulation under the floor slab above the unheated basement block A , New LED lighting	24,1	98,4

Figure 6: Overview refurbishment steps, Block A and A1(connection)

Step	Year	BLOCK B	Specific Heating Demand	Specific Primary Energy Demand
existing situation		constructed 1946, roof refurbished in 2005 with 10 cm. insulation, no insulation on the	163,8	221,2



		walls , old wooden windows		
STEP 1	2015	external wall insulation 25sm. EPS, change of windows, insulation of the perimeter of the foundations, airtightness, shading, ventilation	29,8	114.3
STEP 2	2015	Adding 20 sm. Mineral wool on the roof above the existing 10 cm. (above the last floor slab)	22,5	108.4
STEP 4	2015	New District heating substation (the one from Gym could be used)	22,5	105.3
STEP 5	2020	Insulation under the floor slab above the unheated basement block A , New LED lighting	19,9	86.9

Figure 7: Overview refurbishment steps, Block B

Step	Year	BLOCK C-GYM	Specific Heating Demand	Specific Primary Energy Demand
existing situation		Constructed in 1999, aluminum windows in the GYM, PVC windows in the dressing rooms	121.3	196.5
STEP 1	2015	External wall insulation, ventilation, change of old PVC windows in the dressing rooms	96.4	193.9
STEP 2	2015	Roof insulation	46.3	151.9
STEP 3	2015	New LED lighting will replace the existing mercury lamps in the Gym.Fourteen solar panels for DHW will be added in block C (for the dressing rooms in the Gym). For achieving better comfort in the summer, new heat-pump air-to water can be installed in the Gym on later stages.	46.3	127.9
STEP 4	2020	change of aluminium windows	22.5	93.4

Figure 8: Overview refurbishment steps, Block C

3. Completion of step-by-step refurbishment to EnerPHit

3.1 PHPP Result Sheet of the completed EnerPHit standard, Block A

Figure 9: Specific energy efficiency values of the completed project modelled with PHPP 9

Beta, Block A

3.2 PHPP Result Sheet of the completed EnerPHit standard, Block B

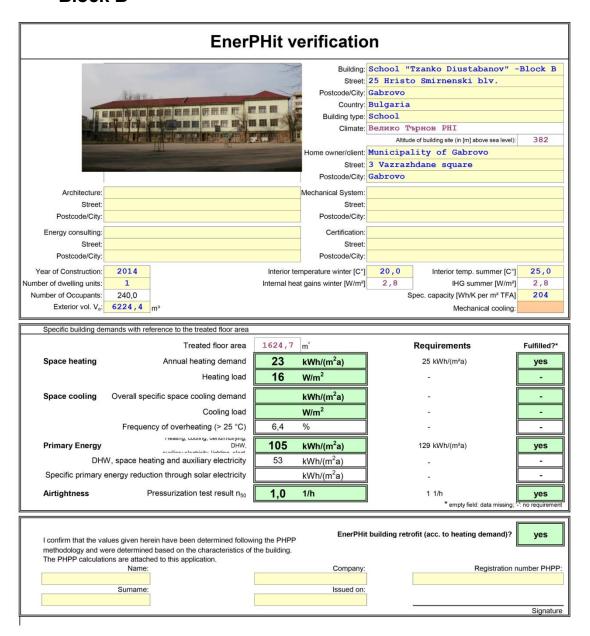


Figure 10: Specific energy efficiency values of the completed project modelled with PHPP 9
Beta, Block B

3.3 PHPP Result Sheet of the completed EnerPHit standard, Block C

	EnerPHit veri	fication		
		Building: Primary Street: 25 Hris ostcode/City: Gabrovo Country: Bulgari Building type: School		ustabanov*
		owner/client: Municip	of building site (in [m] above sea level) bality of Gabrovo ushdane square	382
Architecture:	Mechan	ical System:		
Street:		Street:		
Postcode/City:	Po	ostcode/City:		
Energy consulting: Street:		Certification: Street:		
Postcode/City:	Po	ostcode/City:		
Year of Construction: 2014 nber of dwelling units: 1	Interior temperatu Internal heat gains v	•	Interior temp. summer [C°]	24.0 2.8
lumber of Occupants: 50.0	_	Spec	: c. capacity [Wh/K per mª TFA]	204
Exterior vol. 6224.4 m²			Mechanical cooling:	X
Specific building demands with reference to t	the treated floor area			
	floor area 848.4 m*		Requirements	Fulfilled?*
Space heating Annual heating	g demand 23 kW sating load 16 W/r	h/(m²a)	25 kWh/(m²a)	yes -
Space cooling Overall specific space cooling			•	
		n/(ma) II	-	-
Co		h/(m²a)	-	-
Co Frequency of overheating	poling load 12 W/r			-
Frequency of overheating Primary Energy Heating, cooling, de	ooling load 12 W/r (> 24 °C) 96 ehumiditying, DHW, 93 kW	h/(m²a)	129 kWh/(m²a)	- - yes
Frequency of overheating Primary Energy Heating, cooling, de DHW, space heating and auxiliary	12 W/r	n²	129 kWh/(m²a)	yes -
Frequency of overheating Primary Energy DHW, space heating and auxiliary Specific primary energy reduction through solar	12 W/r	h/(m²a) h/(m²a) h/(m²a)	-	yes
Frequency of overheating Primary Energy Heating, cooling, de DHW, space heating and auxiliary	12 W/r	h/(m²a) h/(m²a) h/(m²a)	129 kWh/(m²a) 1 1/h * empty field: data missing;	- yes
Frequency of overheating Primary Energy DHW, space heating and auxiliary Specific primary energy reduction through solar	poling load (> 24 °C) 96 ehumidifying. DHW, electricity 68 kW/I electricity kW/I tresult n ₅₀ 1.0 1/h Ene peen determined following the the characteristics of the buil	h/(m²a) h/(m²a) h/(m²a) h/(m²a) h/(m²a)	- 1 1/h * empty field: data missing; "	yes no requirement

Figure 11: Specific energy efficiency values of the completed project modelled with PHPP 9
Beta, Block C

